AC - 29/6/2021 Item No. 6.7

AC - 29/6/2021 Item No. 6.7

UNIVERSITY OF MUMBAI

Syllabus for Approval

Sr. No.	Heading	Particulars
1	Title of the Course	T.Y of B.E in Instrumentation Engineering
2	Eligibility for Admission	After Passing Second Year Engineering as per the Ordinance 0.6242
3	Passing Marks	40%
4	Ordinances / Regulations (if any)	Ordinance 0.6242
5	No. of Years / Semesters	8 semesters
6	Level	P.G. / U.G./ Diploma / Certificate (Strike out which is not applicable)
7	Pattern	Yearly / Semester (Strike out which is not applicable)
8	Status	New / Revised REV- 2019 'C' Scheme
9	To be implemented from Academic Year	With effect from Academic Year: 2021-2022

Date: 29/6/2021

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology University of Mumbai Dr. Anuradha Majumdar Dean Faculty of Science and Technology University of Mumbai

Preamble

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Science and Technology (in particular Engineering) of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. Choice based Credit and grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 13 weeks and remaining 2 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

There was a concern that the earlier revised curriculum more focused on providing information and knowledge across various domains of the said program, which led to heavily loading of students in terms of direct contact hours. In this regard, faculty of science and technology resolved that to minimize the burden of contact hours, total credits of entire program will be of 170, wherein focus is not only on providing knowledge but also on building skills, attitude and self learning. Therefore in the present curriculum skill based laboratories and mini projects are made mandatory across all disciplines of engineering in second and third year of programs, which will definitely facilitate self learning of students. The overall credits and approach of curriculum proposed in the present revision is in line with AICTE model curriculum.

The present curriculum will be implemented for Second Year of Engineering from the academic year 2020-21. Subsequently this will be carried forward for Third Year and Final Year Engineering in the academic years 2021-22, 2022-23, respectively.

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology University of Mumbai Dr. AnuradhaMuzumdar Dean Faculty of Science and Technology University of Mumbai

Incorporation and Implementation of Online Contents from NPTEL/ Swayam Platform

The curriculum revision is mainly focused on knowledge component, skill based activities and project based activities. Self learning opportunities are provided to learners. In the revision process this time in particular Revised syllabus of 'C ' scheme wherever possible additional resource links of platforms such as NPTEL, Swayam are appropriately provided. In an earlier revision of curriculum in the year 2012 and 2016 in Revised scheme 'A' and 'B' respectively, efforts were made to use online contents more appropriately as additional learning materials to enhance learning of students.

In the current revision based on the recommendation of AICTE model curriculum overall credits are reduced to 171, to provide opportunity of self learning to learner. Learners are now getting sufficient time for self learning either through online courses or additional projects for enhancing their knowledge and skill sets.

The Principals/ HoD's/ Faculties of all the institute are required to motivate and encourage learners to use additional online resources available on platforms such as NPTEL/ Swayam. Learners can be advised to take up online courses, on successful completion they are required to submit certification for the same. This will definitely help learners to facilitate their enhanced learning based on their interest.

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology University of Mumbai Dr. Anuradha Muzumdar Dean Faculty of Science and Technology University of Mumbai

PREAMBLE

Technical education in our country is progressing rapidly in manifolds. To maintain the quality of education a systematic approach is necessary, which can beobtained by building a strong technical base with the quality. Accreditation provides quality assurance in higher education and recognition to the institution or program, meeting certain specified standards. The main-focus of an accreditation process is to measure the program outcomes, essentially the range of skills and knowledge that a student will have at the time of graduation from the program. Faculty of Science & Technology of the University of Mumbai has taken a lead in incorporating a philosophy of outcome-based education in the process of curriculum development. The earlier syllabus was more focused on providing information and knowledge across various domains, which led to loading of students heavily, in terms of direct contact hours.

I, as a Chairman, Board of Studies in Instrumentation Engineering of University of Mumbai, happy to state here that, the revised curriculum focused on not only providing knowledge content but also on skill-based activities like attitudes, self-learning, and project-based activities. More than 30 senior faculty members from the different affiliated institutes of University of Mumbai were actively participated in this process. They are either Heads of Departments or their senior representatives from the Department of Instrumentation Engineering. The salient features of revised syllabus of Instrumentation Engineering, REV 2019 'C' Scheme are:

- 1. The overall credits and approach of the curriculum proposed in the present revision are in line with AICTE model curriculum.
- 2. Course objectives and course outcomes are framed as per NBA guidelines (Bloom's Taxonomy) and are clearly defined for each course.
- 3. Detailed guidelines are presented to understand the depth and the approach to course to be taught, which will enhance learner's learning process.
- 4. The credit and grading system enables a learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching.
- 5. Minimizes the burden of contact hours, total credits of the entire program will be approximately 172. Learners are now getting sufficient time for self-learning either through online courses or additional projects for enhancing their knowledge and skillsets.
- 6. It also focuses on continuous evaluation which will enhance the quality of education.
- 7. Credit assignment for courses is based on 15 weeks teaching-learning process, however, the content of courses is to be taught in 12-13 weeks and the remaining 2-3 weeks to be utilized for revision, guest lectures, coverage of content beyond the syllabus, etc.
- 8. The revised curriculum emphasizes on skill-based laboratories and project-based learning by introducing mini projects in the second and third year of programs, which will facilitate self-learning of students.
- Dr. Alice Cheeran Chairperson (BoS in Instrumentation Engineering)
- Dr. Mukesh D. Patil Member
- Dr. M. J. Lengare Member
- Dr. Sharad P. Jadhav Member
- Dr. Dipak Gawali– Member

Program Structure for Second Year Instrumentation Engineering (With Effect from 2021-2022)

Course		Те (С	eaching Contac	g Schen t Hour	ie s)			Credi	its Assign	ed
Code	Course Name	TI	heory	Pra	ct.		Theory	Pra	ct.	Total
ISC501	Electrical Machines and Drives	3					3			3
ISC502	Applications of Microcontroller	3					3			3
ISC503	Control System Design	3					3			3
ISC504	Process Instrumentation System	3					3			3
ISDOC501X	DepartmentOptionalCourse-1	3					3			3
ISL501	Electrical Machines and Drives Lab			2				1		1
ISL502	Applications of Microcontroller Lab			2				1		1
ISL503	Process Instrumentation and Control System Design Lab			2				1		1
ISL504	Professional Communication and Ethics-II			2*-	-2			2		2
ISM501	MiniProject–2 A			4 ^{\$}				2		2
	Total	15	5	14			15	07		22
				Exa	ami	nation Sch	eme	-		
				Th	eory					
Course Code	Course Name	Ŀ	Inter Assess	rnal ment	En Se Exa	nd m am	Exam. Duration (in Hrs)	Term Work	PR &OR	Total
		Test1	Test	2 Av	g					
ISC501	Electrical Machines and Drives	20	20) 20) :	80	3			100
ISC502	Applications of Microcontroller	20	20) 20)	80	3			100
ISC503	Control System Design	20	20) 20)	80	3			100
ISC504	Process Instrumentation System	20	20) 20) 3	80	3			100
ISDOC501X	Department Optional Course-1	20	20) 20)	80	3			100
ISL501	Electrical Machines and Drives Lab					-		25	25	50
ISL502	Applications of Microcontroller Lab					-		25	25	50
ISL503	Process Instrumentation and Control System Design Lab					-		25	25	50
ISL504	Professional Communication and Ethics-II					-		25	25 (Internal)	50
ISM501	MiniProject-2 A					-		25	25	50
	Total			100	40)0		125	125	750

Scheme for Semester- V

* Theory class to be conducted for full class

\$ indicates workload of Learner (Not Faculty), for Mini Project

Department Optional Course – 1 (Semester- V)

ISDOC5011	Analytical Instrumentation	
ISDOC5012	Data Structures and Algorithms	No Lab work
ISDOC5013	Mechatronics	
ISDOC5014	Advanced Sensors	

Subject code	Subject Name	Tea	Teaching scheme			Credit assigned					
15/0501	Electrical Machines	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total			
190301	and Drives	3	-	-	3	-	-	3			

Sub Code					Examinat	ion schem			
	Subject Name	1	Theory (o	out of 10	0)	T	Pract.	Oral	Total
		Intern	al Assess	ment	End	Term	and Oral		
		Test1	Test2	Avg.	sem Exam	work			
	Electrical								
ISC501	Machines	20	20	20	80	-	-	-	100
	and Drives								

Subject Code	Subject Name	Credits
ISC501	Electrical Machines and Drives	3
Course Objectives	 To learn the basic concept and characteristics of Electrical motors To equip the students with the knowledge of semiconductor device applications. 	s. ces & their
Course Outcomes	 Students will be able to: 1. Explain working of DC motors and study their characteristics. 2. Describe the working principle of 3-phase I.M. 3. Discuss the constructional features of single-phase I.M. 4. Compare basic characteristics and ratings of power electronic dev 5. Use controlled rectifiers, Inverters & choppers with different load 6. Illustrate working of AC & DC drives. 	vices. Is.

Module	Contents	Hours	CO Mapping
Knowledg transistors	Prerequisite: e of Faraday's laws, Lenz's law. Semiconductor devices such as diode and their characteristics.	es and	
1.	DC Machines Types of DC motors, EMF equation generating & motoring action. Characteristics of DC motors. Speed control methods of DC motors (Numerical Based on Speed control and torque calculation). A selection criterion of DC motors for various applications.	07	CO1
2.	3-Phase Induction Motors Construction & working principle of 3-phase IM. Slip, rotor frequency torque slip characteristic, power stages in IM, Numericals based on torque calculation.	06	CO2
3.	Fractional Horse Power (HP) Motors Construction & working principle of 1-phase I. M. split phase IM. Shaded pole IM Basic, concepts of Stepper Motor, Servomotor, BLDC Motor.	04	CO3
4.	Semiconductor Devices Introduction, characteristic, ratings & applications of power diode, power BJT, power MOSFET & IGBT Construction & characteristic, ratings of SCR, TRIAC. Triggering methods of Thyristors using DIAC, UJT & PUT only, Commutation methods of Thyristors.	06	CO4
5.	Applications of Power Semiconductor Devices Controlled Rectifier: Principle of operation of 1-phase controlled converters, 1-phase half bridge& full bridge converter performance with R-L load. Basic operation of 3- phase converter. AC power control with TRIAC-DIAC Inverter: Principle of operation of basic inverter, bridge inverter, PWM inverter DC-to-DC Converter: Basic operation of chopper, study of different types of chopper circuit like step up & step down chopper.	10	CO5
6.	 Drives DC motor drives: 1-phase & 3-phase converter drives for continuous & discontinuous operation, chopper fed drive. AC motor drives and control: Control strategies of IM like stator voltage control & frequency control. Variable frequency VSI drives. Variable frequency CSI drives. 	06	CO6

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.

3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.

4. Remaining questions will be mixed in nature.

5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 1.Nagrath I.J., Kothari D.P., Electrical Machines, second edition, Tata McGraw Hill, New Delhi.
- 2.B. L. Theraja, Fundamentals of Electrical & Electronics, S.Chand, Technical.
- 3.V.K. Mehta, Rohit Mehta, Principles of Electrical Engg. & Electronics, S.Chand
- 4.P.S. Bhimbra, Power Electronics, Khanna publishers, 2004
- 5.M. H. Rashid, Handbook of Power Electronics, 2nd Edition, PHI, 2005.

6.M.D. Singh, Khanchandani, Power Electronics, Tata Mcgraw-Hill Education.

Reference Books:

- 1. Say M. G., The performance & Design of Alternating Current Machines, 3rd edition, Oxford University
- 2.P.C. Sen, Power Electronics, Tata McGraw Hill, 2005
- 3. Mohan Undeland Robbins, Power Electronics- Converters application & Design, Wiley Eastern, 1996
- 4. Dubey, Dorald, Thyristorised Power Controller, Wiley Eastern Ltd. 1993
- 5.S.K. Bhattacharya, Industrial Electronics & Control, TATA McGraw Hill, 2007
- 6.B.K.Bose, Modern power Electronics & AC Drives Pearson Education Inc.2002.

Subject	Subject Name	Teaching			Credits As	signed		
Code		Scheme						
150502	Applications of	Theory	PR	Tut.	Theory	PR	Tut.	Total
150502	Microcontroller							
		3	-	-	3	-	-	3

Subject	Subject				Examin	ation scheme				
			Theory	Marks (1	.00)	Term	PR	Oral	Total	
Code	Name	Inter	Internal Assessment End			work	and			
		Test1	Fest1Test2Avg.Set		Sem		OR			
			Exam		Exam					
ISC502	Applications of Microcontroller	20	20	20	80	_	-	-	100	

Subject Code	Subject Name	Credits							
ISC502	Applications of Microcontroller	3							
Course objectives	1. To give overview of embedded systems and make awar	e of design							
	challenges and technology.								
	2. To impart knowledge of fundamentals of MCS-51 micr	ocontroller							
	family and working of the system.	amily and working of the system.							
	3. To make the students understand various programming	o make the students understand various programming tools and							
	development of software using assembly and higher levelopment	evelopment of software using assembly and higher level language.							
	4. To give knowledge of integrated hardware of MCS-51								
	5. To give knowledge of interfacing of MCS-51 with diffe	rent peripheral							
	devices such as LCD, keyboard, Memory, ADC, DAC	etc.							
	6. To make the students capable to develop application us	To make the students capable to develop application using learned							
	concepts of hardware, software and interfacing.								
Course Outcomes	The students will be able to:								
	1. Identify the technology in the area of embedded system	18.							
	2. Explain the comparative study of various micro	controllers and							
	microprocessors.								
	3. Outline the knowledge of operation of integration of integration of integration of integration of the second se	ated hardware							
	4. Explain programming tools and design software program	ums in assembly							
	or" C language.								
	5. Solve and construct interfacing of peripheral component and Arduino.	nts with MCS51							
	6. Investigate, recommend and design the sophisticated a	pplication based							
	on MCS-51 such as Traffic light control, Digital weigh	ng machine etc.							

Details of Syllabus:

Prerequisite: Knowledge of Digital Electronics, Programming skills.

Module	Content	Hrs	СО
			Mapping
1	Introduction to Embedded systems Overview of embedded system and examples, Design trends in Embedded systems. RISC and CISC processors.		
	Introduction to Embedded platforms like MCS51, Arduino, Raspberry PI, ARM and PIC development boards	05	CO1
2	MCS-51 Microcontroller		
	Architecture of MCS51 family of microcontroller, and its Variants and comparison. Memory organization and SFRS. Programming model.	04	CO2
3	MCS 51 Programming and tools		
	Simulator, in-circuit debugger, in-circuit emulator, programmers, integrated development environment (IDE), cross compilers. Merits & demerits of above tools.		
	Assembly language programming process. Programming tools. Instruction set, addressing modes. Programming practice using assembly & C compiler.	10	CO3
4	Integrated peripherals of MCS 51		
	Integrated peripherals such as Timers/Counters, Interrupt, serial port and programming.	05	CO4
5	MCS 51 Interfacing		
	Interfacing with Memories, 7 segment display, LCD, ADC, DAC, relay, opto-isolator, DC motor and Stepper Motor.	10	CO5
	Arduino Interfacing		
6	Case Studies		
	Data acquisition systems, Digital weighing machine, Washing machines, Traffic light controller, Home automation and irrigation	05	CO6

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules)

End Semester Theory Examination:

- 1. Question paper will comprise of 6questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus where in sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective Lecture hours as mentioned in the syllabus.

Text Books:

- Mazidi M.A., The8051 Microcontroller & Embedded systems, Pearson Education Second edition.2006
- 2. Kenneth Ayala, The 8051 Microcontroller, Thomson Delmar Learning, Third Edition. 2005
- 3. Steve Heath, Embedded Systems Design, Newness publication, Second edition, ISBN 0 7506 5546

Reference Books:

- 1. David Simon, Embedded Software Primer, Pearson Education, ISBN 81-7808-045-
- Tony Givargis, Embedded System Design: A Unified Hardware/Software Introduction, Wiley Student Edition. ISBN No.812650837X
- P.S. Manoharan, P. S. Kannan, Microcontroller based system design, SciTech Publications (India) Pvt. Ltd. ISBN No. 8183715982
- 4. 8051 / MC151 / MCS251Datasheets
- Microcontrollers-Architecture, Programming, Interfacing and System Design, Pearson Education India; Second edition(2011),ISBN-10: 8131759903.

Websites:

- 1. www.atmel.com
- 2. www.microchip.corn
- 3. <u>www.nxp.com</u>.

Subject	Subject Name	Teaching		Credits Assigned						
Code		Scheme								
ISC503	Control System Design	Theory	PR	Tut.	Theory	PR	Tut.	Total		
	0	3	-	-	3	-	-	3		

					Examinat	tion scheme				
Subject	Subject		Theory	Marks (10	0)	Term PR				
Code	Name	Interna	Internal Assessment (20) End				and	Oral	Total	
		Test1	Test2	Avg.	Sem		OR			
					Exam					
	Control									
ISC503	System	20	20	20	80	-	-	-	100	
	Design									

Subject Code	Subject Name	Credits
ISC503	Control System Design	3
Course objectives	 To develop the skills to represent the system in state space f To impart knowledge required to design state feedback constate estimator. To develop the skills to design the compensator in time and domain and to design the PID compensator. 	form. troller and frequency
Course Outcomes	 The students will be able to: Obtain state-space model of electrical circuits, translation mechanical systems and electromechanical systems etc with linear time-invariant systems Obtain solution of state equations by using Laplace transf Cayley Hamilton method etc. Examine system for its stability, controllability and observer with given transient specificated. Design Lead, Lag and Lead –lag compensator using frequent method. Study the PID controller tuning by Ziegler Nicholas and methods 	onal/rotational n emphasis on form methods, ervability and ations. time domain uency domain d Cohen-coon

Details of Syllabus:

Prerequisite: Knowledge of Matrix algebra, Root-locus, Bode-plot and Nyquist stability criterion.

			CO
Module	Content	Hrs	Mapping
1	State Space Representation of Continuous Time Systems: Terminology of state space representation, advantages of state space representation over classical representation, physical variable form, phase variable forms: controllable canonical form (companion I), observable canonical form (companion II), diagonal/Jordon canonical form (parallel realization), cascade realization, conversion of state model to transfer function. Similarity transformation for diagonalization of a plant matrix, Vander Monde matrix.	08	CO1
2	Solution of State Equation: State Transition Matrix and its properties, computation of state transition matrix using Laplace transformation method, state solution to the homogeneous & non homogeneous differential equations	04	CO2
3	Analysis and Design of Control System in State Space: Controllability, and observabilityproperties. Necessary and sufficiency conditions for complete state controllability and observability. State feedback structure, Pole placement design using state feedback. State observers – Full state observer.(Numerical examples on full-state observer are avoided)	07	CO3
4	Introduction to Compensator: Derivative and integral error compensation, Analysis of the basic approaches to compensation, cascade compensation, feedback compensator Compensator Design using Root-locus: Improving steady-state error and transient response by feedback compensation, cascade compensation, Lag, Lead, Lag-Lead compensation	08	CO4
5	Compensator Design using Frequency response: Systems with time delay, transient response through gain adjustment, Lag, Lead, Lag-Lead compensation.	08	CO5
6	PID Controller Design: PID controller tuning: Ziegler-Nichols method, Cohen-coon method, Designing PID controller using Root-Locus.	04	CO6

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules)

End Semester Theory Examination:

- 1. Question paper will comprise of 6questions, each carrying 20 Marks.
- 2.Total4questions need to be solved.
- 3.Question No. 1 will be compulsory and based on entire syllabus where in sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5.In question paper weightage of each module will be proportional to number of respective. Lecture hours as mentioned in the syllabus.

Text Books:

- 1. K. Ogata, Modern Control Engineering, Prentice Hall of India, 4th edition, 2002
- 2. M. Gopal, Control Systems Principles and Design, TMH, New Delhi, 2nd edition, 2002

Reference Books:

- 1. Norman S. Nise, Control Systems Engineering, John Wiley and Sons, Inc. 2000.
- 2. Francis Raven, Automatic Control Engineering, 5thedition McGraw-Hill

International Edition,

- 3. G. C. Goodwin, S. F. Graebe, M.E. Salgado, Control System Design, Pearson education
- 4. B. C. Kuo "Automatic control systems", Prentice Hall of India.
- 5. M. Gopal, Control Systems Principles and Design, TMH, New Delhi, 2n edition, 2002.
- 6. Stefani, Shahian, Savant, Hostetter, Design of Feedback Control Systems, Oxford University Press, 4thEdition, 2007.
- 7. Richard C. Dorf, Robert H. Bishop, Modern Control Systems, Addition-Wesley, 1999.
- 8. I.J.Nagrath and M. Gopal, Control System Engineering, 3rdEdition, New Age International (P) Ltd., Publishers 2000.
- 9. B.C. Kuo, Farid Gdna Golnaraghi, Automatic Control Systems, PHI, 7th edition, 2003.
- 10. M. N. Bandopadhay, Control Engineering Theory & Practice, PHI, 2003.

Subject Code	Subject Name	Teaching Scheme			Credits A	ssigned		
ISC504	Process Instrumentation System	Theory	PR	Tut.	Theory	PR	Tut.	Total
	Bystem	3	-	-	3	-	-	3

Subject	Subject				Examin	nation sch	eme		
	N		Theory	Marks (1	100)	Term	PR	Oral	Total
Code	Name					work	and		
		Inte	Internal Assessment End				OR		
		Test	Test2	Avg.	Sem		OK		
		1			Exam				
	Process								
ISC504	Instrumentation	20	20	20	80	-	-	-	100
	System								

Subject Code	Subject Name	Credits
ISC503	Control System Design	3
Course Objectives	 To make the students to familiar with different Process Dyna process control actions. Students are expected to learn classification & working of Co Tuning Methods. Students are expected to understand various control schemes. To familiarize concept of Multivariable Control & Discrete s control requirement. 	mics & ontrollers & tate process
Course Outcomes	 The students will be able to: Understand & Learn Process Control Terminologies, Process their mathematical model. Understand different types of control actions & their selection Learn Features & Classify controllers like electronic, pneuma Hydraulic & their Tuning Techniques. Learn various process control schemes & their applications a Understand Multivariable Control systems & their Interaction Develop relay logic for various processes & symbols. 	Dynamics & n. atic and nd selection.

Details of Syllabus:

Prerequisite: Measurement of physical parameters, sensors/transducers and basic control system.

			СО
Module	Content	Hrs	Mapping
1	Introduction to Process Control Process Control Terminology, Development of Typical Process Control loops like Pressure, Temperature, flow & Level. Process characteristics, control system parameters, Dynamic elements in a control loop, Dead time processes and smith predictor compensator. Inverse response behavior of processes and compensator. Dynamic behavior of first and second order systems. Interacting and non- interacting systems. Development of Mathematical Model for first & second order system with Example.	08	CO1
2	Process Control Actions Types-Discontinuous, continuous (P, I, D) and composite control actions (PI, PD, and PID), Effects of control actions, selection criteria.	04	CO2
3	Process Controllers and Tuning Need for controller, General features, specifications, classification& working of Pneumatic, Hydraulic and Electronic controllers. Need for controller Tuning. Tuning Methods-Process reaction curve method, Ziegler-Nichols method, Cohen coon correction for quarter amplitude, Frequency response method, Relay based tuning. Concept of Auto Tuning. Introduction to Model based Controller.	10	CO3
4	Control Schemes Feedback, Feed forward, cascade, Ratio, split range, selective control, adaptive control, inferential control, and selection Guidelines.	06	CO4
5	Multivariable Control Introduction to MIMO systems, Block diagram analysis of multivariable systems, Interaction, relative gain analysis, Decoupler design	04	CO5
6	Discrete-State process control Need for Discrete state process control systems, process specification and event sequence description, Relay Logic symbols, Development of Relay ladder Logic diagram and case study examples.	07	CO6

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules)

End Semester Theory Examination:

- 1. Question paper will comprise of 6questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus where in sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective. Lecture hours as mentioned in the syllabus.

Books Recommended:

Text Books:

- 1. Curtis D. Johnson, "Process Control Instrumentation Technology", PHI /Pearson Education 2002.
- 2. George Stephanopoulos, "Chemical process control", PHI-1999.

Reference Books:

- 1. Bela G. Liptak, "Instrument Engineer"s Hand Book Process Control", Chilton Company, 3rdEdition, 1995.
- 2. M.Chidambaram, "Computer Control of Processes", Narosa, 2002.
- 3.Deshpande P.B and Ash R.H, "Elements of Process Control Applications", ISA Press, New York, 1995.
- 4.D. Patranabis, "Principles of Process Control", Second edition, TMH.
- 5.F.G. Shinsky, "Process Control System", TMH.
- 6.N.E. Battikha, "Condensed Handbook of Measurement and Control", 3rd Edition., ISA Publication.

7. Donald P. Eckman, "Automatic Process Control", Wiley Eastern Ltd.

8. Franklyn W. Kirk, Nicholas R. Rimboi, "Instrumentation", First edition, 1996, D.

Subject	Subject Name	Teachi	Credits Assigned							
Code		ng								
ISDOC	Analytical	Theory	PR	Tut.	Theory	PR	Tut.	Total		
5011	Instrumentation									
5011		3	-	-	3	-	-	3		

Subject	Subject				Examinat	ion scher	ne		
Cala	NT		Theory	Marks (10	0)	Term	PR	Oral	Total
Code	Name	T /	1 4	(20)	F 1	work	and		
		Interna	Internal Assessment (20) End				OR		
		Test1	Test2	Avg.	Sem		on		
					Exam				
ICDOC	Analytical								
15DUC 5011	Instrumenta	20	20	20	80	-	-	-	100
5011	tion								

Subject Code	Subject Name	Credits
ISDOC5011	Analytical Instrumentation	3
Course objectives	 Introduce the basic concept of qualitative and quantitative and given sample. Study various spectroscopic techniques and its instrumentation Study the concept of separation science and its applications. Study the concept of radiochemical analysis along with industion 	alysis of a on. trial analyzers.
Course Outcomes	 The students will be able to: Define and explain various fundamentals of spectroscopy, quantitative analysis. Discuss the terms, principle, instrumentation, operation ar of Molecular spectroscopic techniques. Differentiate between principle, instrumentation and operation absorption and emission Spectroscopy. Explain the various Separation techniques and its instruments. Describe the principle and working of various Radiation det Discuss the principle and working of various Gas analyzers. 	qualitative and nd applications tion of Atomic tation. tectors.

Details of Syllabus:

Prerequisite: Knowledge of sensors and analog electronic circuits.

Module	Content	Hrs	Mapping			
1	Introduction: Introduction to analytical Instrumentation. Fundamentals of Spectroscopy: Nature of Electromagnetic Radiation, Electromagnetic spectrum, Beer Lambert's Law statement and derivation. Deviations from Beer's law. Numerical on EMR and laws of photometry. Interaction of radiation with matter. Instrumentation ofspectroscopic analytical system – Radiation sources, Wavelength selectors, Detectors, signal processors and readoutmodules. Scintillation detector	9	CO1			
2	 Molecular Spectroscopy: Molecular Energy levels, correlation of energy levels with transitions. Electronic transitions and Vibrational transitions – Introduction to UV-VIS molecular spectroscopy – basics of single beam, double beam spectrophotometer and filter photometer, its instrumentation and applications. Basic principle, components and instrumentation of Fluorimeters, Phosphorimeters and Raman spectrometers. 	9	CO2			
3	Molecular Spectroscopy – Nuclear/Rotational transitions – Nuclear Magnetic Resonance (NMR) spectroscopy, basic principle and numerical problems based on NMR principle, instrumentation and constructional details of NMR Spectrometer. Electron Spin Resonance (ESR) Spectroscopy – Basic principle and construction of ESR spectrometer.	4	CO3			
4	Atomic Spectroscopy: Atomic Energy levels, Atomic absorption spectrometers- components, working and absorption spectra. Atomic Emission spectrometers – components, working and emission spectra, comparison between AAS and AES.	3	CO4			
5	 Separation Science: Chromatography: Fundamentals of chromatographic Separations, Classification, Gas chromatographic system with components, factors affecting separation, applications. Analysis of Gas Chromatogram. HPLC – Its principle and instrumentation. Mass Spectrometers: Basic principle, components and types of mass spectrometers, sample handling techniques for liquids and solids, resolution and numerical problems based on resolution. 	9	CO5			
6	Industrial Gas Analyzers: Oxygen Analyzer, Combustion Gas Analyzers (COX, NOX, SOX, hydrocarbons), Gas density analyzer	5	CO6			

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules)

End Semester Theory Examination:

- 1. Question paper will comprise of 6questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus where in sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective. Lecture hours as mentioned in the syllabus.

Text Books:

1. Willard, Merritt, Dean, Settle, Instrumental Methods of Analysis, CBS Publishers & Distributors, New Delhi, 7th Edition.

2. Khandpur R. S., Handbook of Analytical Instruments, Tata McGraw-Hill Publications, 3rd Edition.

Reference Books:

- 1. Skoog, Holler, Niemen, Thomson Principles of Instrumental Analysis, Books-Cole Publications, 5th Edition.
- 2. Ewing Galen W., Instrumental Methods of Chemical Analysis, McGraw-Hill Book Company, 5th Edition.

3. Braun Robert D., Introduction to Instrumental Analysis, McGraw-Hill Book Company.

4. Sherman R.E., Analytical Instrumentation, ISA Publication.

5. B. R. Bairi, Balvinder Singh, N.C.Rathod, P.V.Narurkar, Handbook nuclear medical Instruments, McGraw-Hill Book Company.

Subject code	Subject Name	Tea	ching sche	eme	Credit assigned			
	Data	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ISDOC 5012	and Algorithm Analysis	03	-	-	03	-	-	03

Sub Code	Subject Name	Examination scheme										
		Theory (out of 100)				Term	Pract.					
		Test1	Test2	Avg.	sem Exam	work	and Oral	Oral	Total			
ISDOC 5012	Data Structure and Algorithm Analysis	20	20	20	80	-	-	-	100			

Subject Code	Subject Name	Credits
ISDOC5012	Data Structure and Algorithm Analysis	3
Course Objectives	 To improve the logical ability To teach efficient storage mechanisms of data for an easy access. To design and implementation of various basic and advanced data structures and algorithm analysis. To introduce various techniques for representation and analysis or in the real world. To develop application using data structures and algorithm and ar 6. To teach the concept of protection and management of data. 	a f the data nalysis.
Course Outcomes	 Student will be able to: Choose appropriate data structure as applied to specified problem definition and analyse the algorithm. Handle operations like searching, insertion, deletion, traversing mechanism etc. on various data structures and algorithm analysi Apply concepts learned in various domains like DBMS, compile construction etc. Use linear and non-linear data structures like stacks, queues, line etc. Assess different sorting algorithms and select depending on app 6. Apply graph algorithms to solve real-world challenges 	m is. er ked list lication.

Details of Syllabus:

Module	Contents	Hrs.	CO mapping
1	 Introduction: Introduction, Mathematics Review, Exponents, Logarithms, Series, Modular Arithmetic, The P Word, A Brief Introduction to Recursion, Recursion and Induction. Algorithm Analysis: Mathematical Background, Model, What to Analyse, Running Time Calculations, General Rules, Solutions for the Maximum Subsequence Sum Problem, Logarithms in the Running Time, Euclid's Algorithm, Exponentiation, Checking Your Analysis, A Grain of Salt. 	6	CO1
2	Stacks, Queues and List: Stacks, Queues, Linked Lists, Double-ended Queues. Abstract Data Type (ADT), The List ADT, Simple Array Implementation of Lists, Linked Lists, Programming Details, Common Errors, Doubly Linked Lists, Circularly Linked Lists, Examples, Cursor Implementation of Linked Lists, The Stack ADT, Implementation of Stacks, Applications, The Queue ADT, Array Implementation of Queues, Applications of Queues.	9	CO2
3	Trees and Search Trees: Tree, Implementation of Trees, Tree Traversals with an Application, Binary Trees, Expression Trees, the Search Tree ADT-Binary Search Trees, AVL Trees, Single Rotation, Double Rotation, Red-Black Trees, External searching in B-Trees, Tree Traversals, B-Trees	9	CO3
4	Priority queues: The priority queues Abstract data Type, Implementing a Priority queues with a List, Heaps, Adaptable priority queues.	4	CO4
5	Sorting Sets, and Selection: Insertion Sort, Shellsort, Heapsort, Quicksort, Bucket Sort, Merge Sort and radix Sort, and A Lower Bound on comparison-based Sorting and radix Sort, the complexity of some sorting algorithms, comparison of Sorting Algorithms, The Set ADT and union / file Structures	4	CO5

ſ		Graphs:		
		The graph Abstract Data Type, Data Structures for Graphs, Graph Traversals, Directed Graphs, Weighted Graphs, Shortest Paths, and Minimum spanning Trees.		CO6
	6	Applications of DFS and BSF, Shortest-Path Algorithms, Dijkstra's Algorithm, Graphs with Negative Edge Costs, Acyclic Graphs, Network Flow Problems, Minimum Spanning Tree	7	

Internal Assessment consists of two tests out of which, one should be compulsory class test (on Minimum 02 Modules) and the other is either a class test or assignment on live problems or Course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of
- 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 1. Mark Allien Weiss, Data Structure and Algorithm Analysis in C, Pearson.
- 2. Micheal Goodrict, Roberto Tamassia, Data Structure and Algorithm in C++, Wiley India
- 3. Richard F. Gilberg&Behrouz A. Forouzan, Data Structures A Pseudo code Approach with C, second edition, CENGAGE Learning.
- 4. Rajesh K. Shukla, Data Structures Using C & C++, Wiley- India
- 5. ReemaThareja, Data Structures using C, Oxford University press.
- 6. Jean-Paul Tremblay, P. G. Sorenson, Introduction to Data Structure with Applications, Second Edition

Reference Books:

 Ellis Horowitz, Sarataj Sahni, S.Rajsekaran," Fundamentals of computer algorithm", University Press.
 Mark Allen Weiss, "Data Structure & algorithm Analysis in C++", 3rd Edition, Pearson Education

- 3. Data Structures Using C, ISRD Group, Second Edition, Tata McGraw-Hill
- 4. Balagurusamy, Data Structure Using C,
- 5. Prof. P.S. Deshpande, Prof. O.G. Kakde, C & Data Structures, , Dreamtech press.
- 6. Data Structures, Adapted by: GAV PAI, Schaum's Outlines.

Subject code	Subject Name	Tea	ching scho	eme	Credit assigned			
15D005012	Machatronia	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
15D0C5015	Mechatronics	3	-	-	3	-	-	3

	Subject Name	Examination scheme									
Subject]	Theory (o	out of 10)0)		Pract.	Oral	Total		
Code		Intern	al Assess	ment	End	Term	and				
		Test1	Test2	Avg.	sem Exam	work	Oral				
ISDOC5013	Mechatronics	20	20	20	80	-	-	-	100		

Subject Code	Subject Name	Credits						
ISDOC5013	Mechatronics 3							
Course Objectives	1. To present architecture of the mechatronics system design							
	2. To study on broad spectrum the characteristics of the mech	nanical and						
	electrical actuators and their selection for mechatronic systems.							
	3. Development of process plan and templates for design of n	nechatronic						
	systems.							
Course Outcomes	The students will be able to:							
	1. Examine key elements and design process of mechatronics systemeters	em.						
	2. Apply the concept of system modeling to physical systems.							
	3. Identify the suitable sensor and actuator for a mechatronic syste	m.						
	4. Examine feedback and intelligent controllers.							
	5. Illustrate mechatronics system validation.							
	6. Integrate the components in mechatronics system.							

Details of Syllabus:

Prerequisite: Knowledge of sensors and mechanical and electronic components.

Module	Contents	Hrs.	CO mapping
1	Introduction to mechatronics systems: Definition and evolution levels of mechatronics, integrated design issues in mechatronics, key elements of mechatronics, mechatronics design process- modeling and simulation, prototyping, deployment /life cycle, advanced approaches in mechatronics.	05	CO1
2	Modeling and Simulation of physical systems: Simulation and block diagrams, Analogies and impedance diagrams, mechanicaltranslational and rotational systems-sliding block with friction, elevator cable system, mass-damper system, automobile suspension system, mechanical lever system, geared elevator system, electromechanical coupling- DC motor,	07	CO2
3	Electrical actuation: A.C and DC motors, stepper motors, mechanical switches and solid state switches. Mechanical Actuation: types of motion, kinematic chain, cams, gears, ratchets and pawl, belt and chain drives, bearings, mechanical aspects of motor selection, piezoelectric actuators, magnetostrictive actuators, memory metal actuators, Programmable Logic Controller	07	CO3
4	Intelligent control: Automatic control methods, Artificial Neural Network (ANN) – Modeling, basic model of neuron, characteristics of ANN, perceptron, learning algorithms, Fuzzy logic – propositional logic, membership function, fuzzy logic and fuzzy rule generation, defuzzification, time dependent and temporal fuzzy logic.	08	CO4
5	Components based modular design and system validation: Components based modular design view, system validation, validation methodology- integrated and design dependence, distributed local level, validation schemes, fusion technique	06	CO5
6	Integration: Advanced actuators, consumer mechatronic products, hydraulic fingers, surgical equipment, industrial robot, autonomous guided vehicle, drilling machine, 3D Plotter, Motion Control Systems-Printing machines, coil winding machines, machine tools, and robotics, IC, and PCB manufacturing.	06	CO6

Internal Assessment consists of two tests out of which, one should be compulsory class test (on Minimum 02 Modules) and the other is either a class test or assignment on live problems or Course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of
- 4. 4 to 5 marks will be asked.
- 5. Remaining questions will be mixed in nature.
- 6. In question paper weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 1. Devdas Shetty and Richard Kolk, Mechatronics System Design^I, Thomson Learning, 2nd reprint, 2001.
- 2. W. Bolton, Mechatronics Electronic Control Systems in Mechanical and Electrical Engineering, Pearson Education Ltd, 4th edition, 2010.
- 3. StamatiosV. Kartalopoulos, Understanding Neural Networks and fuzzy Logicl, PHI, 3rd reprint, 2013.

Reference Books:

- 1. Nitaigour Mahalik, Mechatronics- Principles, Concepts and Applications, Tata McGraw Hill.
- 2. Zhijun Li, Shuzhi Sam Ge, Fundamentals in Modeling and Control of Mobile Manipulators, 2017, CRC Press.
- 3. Sergey Edward Lyshevski, Mechatronics and Control of Electromechanical Systems, 2017, CRC Press.
- 4. BodganWilamowski, J. David Irwin, Control and Mechatronics, 2017, CRC Press.
- 5. Takashi Yamaguchi, Mitsuo Hirata, Justin CheeKhiang Pang, High-Speed Precision Motion Control, 2017, CRC Press.
- 6. David Allan Bradley, Derek Seward, David Dawson, Stuart Burge, Mechatronics and the Design of Intelligent Machines and Systems, 2000, CRC Press.
- 7. Clarence W. de Silva, Farbod Khoshnoud, Maoqing Li, Saman K. Halgamuge, Mechatronics: Fundamentals and Applications, 2015, CRC Press.
- 8. Clarence W. de Silva, Mechatronics: A Foundation Course, 2010, CRC Press.
- 9. GENERAL CATALOGUE 2011 Motion & Drives, OMRON.

Subject code	Subject	Teaching scheme			Credit assigned			
	Name							
ISDOC5014	Advanced	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Sensors	3	-	-	3	-	-	3

				I	Examinatio	on schem	e		
	Subject		The	eory (100)			Pract.		Total
Sub Code	Name	Internal	Asses	sment (20)	End	Term	and Oral	Oral	
		Test 1	Test 2	Avg.	sem Exam	work			
ISDOC5014	Advanced Sensors	20	20	20	80	-	-	-	100

Subject Code	Subject Name	Credits						
ISDOC5014	Advanced Sensors	3						
Course Objectives		1.						
	1. To expose the students to the concepts of smart sensors micro sensors	and						
	 To provide sufficient knowledge about the sensor fabrication. To create awareness about the various application fields of smart sensors. 							
Course Outcomes	The students will be able to -							
	1. Explain the various principles employed intransducers.							
	2. Examine the methods of fabricating a sensor.							
	3. Apply knowledge in designing smart sensors.							
	4. Discuss the techniques of fabrication and application of	f MEMS.						
	5. Describe the various applications of smart sensors.							
	6. Discuss advanced sensing technology.							

Details of Syllabus:

Prerequisite: Fundamentals of transducers.

Module	Content	Hrs	CO
			Mapping
1	Review of Fundamental of Sensors: Principle of physical and chemical transduction, sensor classification, characterization of mechanical, electrical, optical, thermal, magnetic, chemical and biological sensors, their calibration and determination of characteristics	07	CO1
2	Sensor Fabrication:		
	Design considerations and selection criterion as per standards, Sensor fabrication techniques, process details and latest trends in sensor fabrication. Thick film sensing and system design.	06	CO2
3	Smart Sensors:		
	Smart sensor basics, signal conditioning and A/D conversion for sensors, examples of available ICs (DHT, Smart analog IC 500, ADXL345) and their applications.	07	CO3
4	Micro Sensors:		
	Introduction, Intrinsic characteristics of MEMS, common fabrication techniques, application of MEMS in sensing systems including pressure sensors, accelerometers, gyroscopes and strain gauges.	06	CO4
5	Advanced Sensor Applications:		
	Temperature & Humidity measurement using DHT Sensor in environment monitoring, Acceleration measurement using ADXL345 for automotive industry, MEMS Temperature sensors for automotive applications, MEMS chemical sensors for survey meters, MEMS pressure sensors for medical applications	07	CO5
6	Advanced Sensing Technology:		
	Sensors, instruments and measurement techniques for emerging application areas such as environmental measurement like DO (dissolves oxygen),BOD (biological oxygen demand), COD (chemical oxygen demand), TOC (total organic carbon), Cox (carbon dioxides), NOx (nitrogen oxide), for navigation and inertial measurements, for agricultural measurements such as soil moisture, wind speed, leaf wetness duration, sensors for food processing like smell or odour,taste.	06	CO6

Internal Assessment consists of two tests out of which, one should be compulsory class test (on minimum 02 Modules) and the other is either a class test or assignment on live problems or course project.

Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20Marks.
- 2. Total 4 questions need to be solved.
- 3. Question No. 1 will be compulsory and based on entire syllabus wherein sub questions of 4 to 5 marks will be asked.
- 4. Remaining questions will be mixed in nature.
- 5. In question paper weight age of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Text Books:

- 1. Chang Liu, Foundations of MEMS, Pearson Education Inc.,2012.
- 2. Stephen D Senturia, Microsystem Design, Springer Publication, 2000.
- 3. Tai Ran Hsu, MEMS & Micro systems Design and Manufacture, Tata Mc Graw Hill, New Delhi,2002.
- 4. Jacob Fraden, Handbook of Modern Sensors, 5th Edition, Springer.
- 5. S. M. Sze, Semiconductor Sensors, Wiley
- 6. M J Usher, Sensors and Transducers, MacMillan, 1985.

References:

- 1. Nadim Maluf," An Introduction to Micro Electro Mechanical System Design", Artech House, 2000.
- 2. Mohamed Gad-el-Hak, editor, The MEMS Handbook, CRC press Baco Raton, 2001.
- 3. Julian w. Gardner, Vijay K. Varadan, Osama O.Awadelkarim, Micro Sensors MEMS and Smart Devices, John Wiley & Son LTD,2002.
- 4. James J.Allen, Micro Electro Mechanical System Design, CRC Press Publisher, 2005.
- 5. Thomas M. Adams and Richard A.Layton, Introduction to MEMS, Fabrication and Application, Springer, 2010.

Subject code	Subject Name	Теа	aching sche	eme		Credit a	ssigned	
	Electrical Machines	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ISL501	and Drives Lab		2			1		1

		Examination scheme										
			Theory (o	out of 10	0)		Pract					
Subject Code	Subject Name	Intern	nal Assess	ment	End sem Exam	Term work	and Oral	Oral	Total			
		Test1	Test2	Avg.								
ISL501	Electrical Machines and Drives Lab					25	25		50			

Subject Code	Subject Name	Credits					
ISL501	Electrical Machines and Drives Lab						
Course Objectives	 To learn the basic concept and characteristics of Electrical motors. To equip the students with the knowledge of semiconductor devices& applications. 	their					
Course Outcomes	 Students will be able to: Explain working of DC motors and study their characteristics. Describe the working principle of 3-phase I.M. Discuss the constructional features of single-phase I.M. Compare basic characteristics and ratings of power electronic devices. Use controlled rectifiers, Inverters & choppers with different loads. Illustrate working of AC & DC drives. 						

Syllabus: Same as that of Subject ISC501Electrical Machines and Drives.

List of Laboratory Experiments:

Sr.	Detailed Contents	СО
No	Detaneu Contents	Mapping
01	Speed control methods of DC motor.	CO1
02	Starting of 3-phase IM by DOL/Autotransformer/rotor resistance method.	CO2
03	Load Test on DC Motor/ Induction Motor.	CO1/CO2
04	Plot V-I characteristics of SCR.	CO4
05	Triggering Methods of SCR.	CO4
06	Plot V-I characteristics of Diac.	CO4
07	Plot V-I characteristics of Triac.	CO4
08	Plot V-I characteristics of IGBT.	CO4
09	Triac based AC power control circuit.	CO5
10	Half wave & full wave controlled rectifier.	CO5
11	SCR Based Inverter	CO5
12	MOSFET/IGBT Based Inverter	CO5
13	Step UP-Step Down Chopper.	CO5
14	DC motor speed control drive	CO5
15	AC drive for I.M.	CO6

Any other experiment based on syllabus which will help students to understand topic/concept. Any two experiments based on simulation.

Practical Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum eight experiments and any two using software.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments)	: 10 Marks
Laboratory work (programs /journal)	: 10 Marks
Attendance	: 05 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

University of Mumbai, Instrumentation Engineering, REV 2019 'C' Scheme

Subject Code	Subject Name	Teacl	ning Sch	eme		Credit	s Assigned	
ISL502	Applications of Microcontroller	Theory	PR	Tut.	Theory	PR/ OR	Tut.	Total
	Lab	-	2	-	-	1	-	1

Subject	Subject Name		Examination scheme							
Code			Theory Marks(100)				PR	Oral	Total	
		Interr	Internal Assessment(20) End				and			
		Test	Test2	Avg.	Sem		Oral			
		1			Exam					
	Applications of									
ISL502	Microcontroller					25	25	-	50	
	Lab									

Subject Code	Subject Name	Credits
ISL502	Applications of Microcontroller Lab Practice	1
Course	1. To explain the assembly and,, c ^{**} programming concepts.	
objectives	2. To explain addressing modes and instruction set of MCS-	51 and develop
Ū	programs using instructions.	
	3. To give knowledge of integrated hardware of MCS-51	
	4. To study different SFRs associated with integrated periph	nerals and to give
	knowledge of interfacing of MCS-51 and Arduino	with different
	peripheral devices such as LCD, keyboard, Memory, AD	C, DAC etc.
	5. To develop simple application board using MCS-51 and A	Arduino.
	6. To make the students capable to develop application using	ng learned
	concepts of hardware, software and interfacing	
Course	The students will be able to:	
Outcomes		c
	1. Design and develop programs using instructions learned	from
	instructions in assembly or,, c language.	
	2. Explain Integrated timers and Counters implantation.	
	3. Outline the knowledge of operation of integrated hardwar	re components.
	4. Designs of programs in assembly or,, C ^{**} language.	
	5. Solve and construct interfacing of peripheral components	s with MCS 51
	and Arduino.	
	6. Investigate, recommend and design the sophisticated appl	lication based on
	MCS-51 such as Traffic light control, Digital weighing m	achine etc.

Syllabus: Same as that of SubjectISC502Applications of Microcontroller.

Sr.	Detailed Content	CO
No.		Mapping
1	To develop a program to perform16 bit Arithmetic and Logical operations	C01
2	To develop a program to perform Code conversion	CO1
3	To develop a program for generating square wave on port pin with and without timer.	CO2
4	To develop a program for interfacing 7 segments/ LCD displays with MCS-51	CO4
5	To develop a program for Serial Communication with PC.	CO3
6	To develop a program for interfacing DAC and its application.	CO5
7	To develop a program for Speed control of DC Motor	CO6
8	To develop a program for Stepper motor control	CO6
9	To develop a program for implementing traffic light controller.	CO6
10	To develop a program for interfacing Switch, LED, LDR with Arduino	CO5
11	To develop a program for interfacing7 segments/ LCD displays with Arduino	CO5
12	To develop a program for interfacing LM35, DHT11, accelerometer with Arduino	CO5
13	To develop a program for interfacing of DC Motor/ Stepper motor with Arduino	CO5

List of Laboratory Experiments/Assignments:

Any additional experiments/assignments based on syllabus whichwillhelp students to understand topic/concept.

Practical/Oral Examination:

Practical/Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum 10 experiments and twoassignments. The distribution of marks for term work shall be as follows:

Laboratory work (Experiments/assignments) : 10 Marks Laboratory work (programs / journal) : 10 Marks

Attendance : 5Marks

The final certification and acceptance of term work ensures the satisfactory performance of Laboratory work and minimum passing in the term work.

Subject code	Subject Name	Теа	aching sche	eme		Credit a	assigned	
	Process	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ISL503	Systems and Control		2			1		1
	System Design Lab							

		Examination scheme									
		Theory (out of 100)					Pract				
Subject Code	Subject Name	Inter	nal Assess	sment	End sem Exam	Term work	and Oral	Oral	Total		
		Test1	Test2	Avg.							
ISL503	Process Instrumentation Systems and Control System Design Lab					25	25		50		

Subject Code	Subject Name	Credits
ISL503	Process Instrumentation and Control System - Lab	1
Course Objectives	 To make students familiar with different dynamics and process control. To understand various control schemes. To understand concept of Multivariable Control & Discrete state proceeding Requirement. To develop the skills needed to represent the system in state space for 5. To impart knowledge required to design state feedback controlle estimator. To design the compensator in time and frequency domain. 	ol actions. Decess control rm. er and state
Course Outcomes	 Students will be able to – 1. To relate the working of different types of control actions, controlle tuning methods. 2. To analyze various control schemes and their application 3. To evaluate interaction of multivariable control systems & to dev logic for discrete state process contro 4. Obtain state model of a system from transfer function and stud transformation. 5. Verify the controllability and observability of the given system and controller and observer for the given system with transient specificati 6. Design lead, lag, and lag-lead compensator using root-locus an techniques with given transient specifications. 	ers and their 1. 7elop ladder 1y similarity d design the ions. d bode-plot

Syllabus: Same as that of Subject ISC503 Control System Design and ISC504 Process Instrumentation System

Sr. No	Detailed Contents						
01	Study Features & operation of ON-OFF Control action & its Application.	CO1					
02	Study of flow rate control using P, PI, PD and PID controller modes.	CO1					
03	Study of Ratio control system.	CO2					
04	Study of Multivariable control system.	CO3					
05	Study of discrete state process control system.	CO3					
06	Obtain a state-space model in different canonical forms of a given transfer function.	CO5					
07	Investigate controllability and observability of system , then accordingly design controller and observer.	CO5					
08	Design of Lead Compensator using Root-locus technique.	CO6					
09	Design of Lag Compensator using Root-locus technique	CO6					
10	Design of Lag-Lead Compensator using Root-locus technique	CO6					
11	Design of Lead Compensator using Bode-plot technique.	CO6					
12	Design of Lag Compensator using Bode-plot technique	CO6					
13	Design of Lag-Lead Compensator using Bode-plot technique	CO6					

List of Laboratory Experiments:

Any other experiment based on syllabus which will help students to understand topic/concept. Any two experiments based on simulation.

Practical Oral Examination:

Oral examination will be based on entire syllabus.

Term Work:

Term work shall consist of minimum eight experiments and any two using software.

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments)	: 10 Marks
Laboratory work (programs /journal)	: 10 Marks
Attendance	: 05 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Course Code	Course Name	Teaching scheme Credit assigned						
ISL504	Professional Communication & Ethics-II	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
			2*+ 2 Hours (Batch-wise)			2		02

*Theory class to be conducted for full class.

						Examinat	tion Scheme				
Course Code				Theo	ory						
		Internal		l							
	Course Name	Assessment		End	End Duration	Term	Pract	Oral	Internal	Total	
		Test	Test	Avg	sem	(hrs)	WULK			Ulai	
		1	2	•							
	Professional										
	Communicatio										
ISL504	n & Ethics-II						25			25	50
	(abbreviated										
	PCE-II)										

Course Code	Course Name	Credits					
ISL504	Professional Communication & Ethics-II	02					
Course Rationale	This curriculum is designed to build up a professional and ethical approach, effective oral and written communication with enhanced soft skills. Through practical sessions, it augments student's interactive competence and confidence to respond appropriately and creatively to the implied challenges of the global Industrial and Corporate requirements. It further inculcates the social responsibility of engineers as technical citizens.						
Course Objectives	 To discern and develop an effective style of writin technical/business documents. To investigate possible resources and plan a succe To understand the dynamics of professional comm group discussions, meetings, etc. required for care To develop creative and impactful presentation sk To analyze personal traits, interests, values, aptitude To understand the importance of integrity and dev ethics. 	ng important assful job campaign. nunication in the form of er enhancement. ills. des and skills. relop a personal code of					

	Learner will be able to
Course Outcomes	 plan and prepare effective business/ technical documents which will in turn provide solid foundation for their future managerial roles. strategize their personal and professional skills to build a professional image and meet the demands of the industry. emerge successful in group discussions, meetings and result-oriented agreeable solutions in group communication situations. deliver persuasive and professional presentations. develop creative thinking and interpersonal skills required for effective professional communication. apply codes of ethical conduct, personal integrity and norms of organizational behaviour.

Module	Contents	Hours							
	ADVANCED TECHNICAL WRITING :PROJECT/PROBLEM BASED LEARNING (PBL)								
	1.1 Purpose and Classification of Reports: Classification on the basis of:								
	 Subject Matter (Technology, Accounting, Finance, Marketing, etc.) Time Interval (Periodic, One-time, Special) Function (Informational, Analytical, etc.) Physical Factors (Memorandum, Letter, Short & Long) 1.2. Parts of a Long Formal Report: 								
1	 Report Proper (Main Body) Appended Parts (Back Matter) Language and Style of Reports 	06							
1	 Tense, Person & Voice of Reports Numbering Style of Chapters, Sections, Figures, Tables and Equations Referencing Styles in APA & MLA Format Proofreading through Plagiarism Checkers 								
	 1.4. Definition, Purpose & Types of Proposals Solicited (in conformance with RFP) & Unsolicited Proposals Types (Short and Long proposals) 1.5. Parts of a Proposal 1. Elements 2. Scope and Limitations 3. Conclusion 1.6. Technical Paper Writing Parts of a Technical Paper (Abstract, Introduction, Research Methods, Eindings and Analysis Discussion Limitations Enture Scope and 								

	References)					
	Language and Formatting					
	Referencing in IEEE Format					
	EMPLOYMENT SKILLS					
	2.1. Cover Letter & Resume					
	• Parts and Content of a Cover Letter					
	 Difference between Bio-data Resume & CV 					
	Essential Parts of a Resume					
	 Types of Resume (Chronological Functional & Combination) 					
	2.2 Statement of Purnose					
	Importance of SOP					
	Tips for Writing an Effective SOP					
	2.3 Verbal Aptitude Test					
	• Modelled on CAT_GRE_GMAT exams					
2	2.4. Group Discussions	06				
	• Purpose of a GD					
	• Parameters of Evaluating a GD					
	• Types of GDs (Normal, Case-based & Role Plays)					
	 GD Etiquettes 					
	2.5. Personal Interviews					
	Planning and Preparation					
	• Types of Questions					
	• Types of Interviews (Structured, Stress, Behavioural, Problem Solving &					
	Case-based)					
	• Modes of Interviews: Face-to-face (One-to one and Panel) Telephonic,					
	Virtual					
	BUSINESS MEETINGS					
	1.1. Conducting Business Meetings					
	• Types of Meetings					
	Roles and Responsibilities of Chairperson, Secretary and Members					
3	Meeting Etiquette	02				
	3.2. Documentation					
	• Notice					
	• Agenda					
	• Minutes					
	TECHNICAL/ BUSINESS PRESENTATIONS					
	1.1 Effective Presentation Strategies					
	• Defining Purpose					
	Analyzing Audience, Location and Event					
4	Gathering, Selecting & Arranging Material	02				
-	• Structuring a Presentation	04				
	Making Effective Slides					
	Types of Presentations Aids					
	Closing a Presentation					
	Platform skills					
	University of Mumbai, Instrumentation Engineering, REV 2019 'C' Scheme					

	1.2 Group Presentations				
	Sharing Responsibility in a Team				
	• Building the contents and visuals together				
	Transition Phases				
	INTERPERSONAL SKILLS				
	1.1. Interpersonal Skills				
	Emotional Intelligence				
	Leadership & Motivation				
	Conflict Management & Negotiation				
_	Time Management				
5	• Assertiveness	08			
	Decision Making				
	5.2 Start-up Skills				
	Financial Literacy				
	Risk Assessment				
	• Data Analysis (e.g. Consumer Behaviour, Market Trends, etc.)				
	CORPORATE ETHICS				
	6.1Intellectual Property Rights				
	• Copyrights				
	• Trademarks				
	• Patents				
6	Industrial Designs	02			
	Geographical Indications				
	Integrated Circuits				
	• Trade Secrets (Undisclosed Information)				
	6.2 Case Studies				
	Cases related to Business/ Corporate Ethics				

List of assignments:

(In the form of Short Notes, Questionnaire/ MCQ Test, Role Play, Case Study, Quiz, etc.)

- Cover Letter and Resume
- Short Proposal
- Meeting Documentation
- > Writing a Technical Paper/ Analyzing a Published Technical Paper
- ➢ Writing a SOP
- ≻ IPR
- ➢ Interpersonal Skills
- > Aptitude test (Verbal Ability)

Note:

- 1. The Main Body of the project/book report should contain minimum 25 pages (excluding Front and Back matter).
- 2. The group size for the final report presentation should not be less than 5 students or exceed 7 students.
- 3. There will be an end-semester presentation based on the book report.

Assessment:

Term Work:

Term work shall consist of minimum 8 experiments.

The distribution of marks for term work shall be as follows:

Assignment : 10 Marks

Attendance : 5 Marks

Presentation slides : 5 Marks

Book Report (hard copy) : 5 Marks

The final certification and acceptance of term work ensures the satisfactory performance of laboratory work and minimum passing in the term work.

Internal oral:

Oral Examination will be based on a GD & the Project/Book Report presentation.

Group Discussion : 10 marks Project Presentation : 10 Marks Group Dynamics : 5 Marks

Books Recommended:

Textbooks and Reference books:

- Arms, V. M. (2005). Humanities for the engineering curriculum: With selected chapters from Olsen/Huckin: Technical writing and professional communication, second edition. Boston, MA: McGraw-Hill.
- 2. Bovée, C. L., &Thill, J. V. (2021). Business communication today. Upper Saddle River, NJ: Pearson.
- 3. Butterfield, J. (2017). Verbal communication: Soft skills for a digital workplace. Boston, MA: Cengage Learning.
- 4. Masters, L. A., Wallace, H. R., & Harwood, L. (2011).Personal development for life and work. Mason: South-Western Cengage Learning.
- 5. Robbins, S. P., Judge, T. A., & Campbell, T. T. (2017). Organizational behaviour. Harlow, England: Pearson.
- 6. Meenakshi Raman, Sangeeta Sharma (2004) Technical Communication, Principles and Practice. Oxford University Press
- 7. Archana Ram (2018) Place Mentor, Tests of Aptitude For Placement Readiness. Oxford University Press
- 8. Sanjay Kumar &PushpLata (2018). Communication Skills a workbook, New Delhi: Oxford University Press.

Subject code	Subject Name	Teaching scheme					Credit ass	igned	
ICME01	Mini Project – 2A	Theory	Pract	t. T	ut. Th	eory I	Pract.	Tut.	Total
151/1501			4 ^{\$}				2		2
\$ indicates	\$ indicates workload of Learner (Not Faculty)								
		Examination scheme							
Sub Code	Subject Name		Theory (out of 1()0)	Term	Pract.		
Coue		Inter	Internal Assessment End			work and		Oral	Total
		Test1	Test2	Avg.	Exam		Oral		
ISM501	Mini Project – 2A					25		25	50

50

ISM501

Mini Project – 2A

Subject Code	Subject Name	Credits
ISM501	Mini Project – 2 A	2
Course Objectives	 The course is aimed 1. To acquaint with the process of identifying the needs and converting it is problem. 2. To familiarize the process of solving the problem in a group. 3. To acquaint with the process of applying basic engineering fundamental attempt solutions to the problems. 4. To inculcate the process of self-learning and research. 	into the ls to
Course Outcomes	 On successful completion of course learner/student will be able to: Identify problems based on societal /research needs. Apply Knowledge and skill to solve societal problems in a group. Develop interpersonal skills to work as member of a group or leaded. Draw the proper inferences from available results through theoretic experimental/simulations. Analyze the impact of solutions in societal and environmental context sustainable development. Use standard norms of engineering practices Excel in written and oral communication. Demonstrate capabilities of self-learning in a group, which leads to learning. Demonstrate project management principles during project work. 	er. cal/ text for o life long

Guidelines for Mini Project

- Students shall form a group of 3 to 4 students, while forming a group shall not be allowed less than three or more than four students, as it is a group activity.
- Students should do survey and identify needs, which shall be converted into problem statement for mini project in consultation with faculty supervisor/head of department/internal committee of faculties.
- Students hall submit implementation plan in the form of Gantt/PERT/CPM chart, which will cover weekly activity of mini project.
- A log book to be prepared by each group, wherein group can record weekly work progress, guide/supervisor can verify and record notes/comments.
- Faculty supervisor may give inputs to students during mini project activity; however, focus shall be on self-learning.
- Students in a group shall understand problem effectively, propose multiple solution and select best possible solution in consultation with guide/ supervisor.
- Students shall convert the best solution into working model using various components of their domain areas and demonstrate.
- The solution to be validated with proper justification and report to be compiled in standard format of University of Mumbai.
- With the focus on the self-learning, innovation, addressing societal problems and entrepreneurship quality development within the students through the Mini Projects, it is preferable that a single project of appropriate level and quality to be carried out in two semesters by all the groups of the students. i.e. Mini Project 1 in semester III and IV. Similarly, Mini Project 2 in semesters V and VI.
- However, based on the individual students or group capability, with the mentor's recommendations, if the proposed Mini Project adhering to the qualitative aspects mentioned above gets completed in odd semester, then that group can be allowed to work on the extension of the Mini Project with suitable improvements/modifications or a completely new project idea in even semester. This policy can be adopted on case by case basis.

Guidelines for Assessment of Mini Project:

Term Work

- The review/ progress monitoring committee shall be constituted by head of departments of each institute. The progress of mini project to be evaluated on continuous basis, minimum two reviews in each semester.
- In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.

University of Mumbai, Instrumentation Engineering, REV 2019 'C' Scheme

• Distribution of Term work marks for both semesters shall be as below;

0	Marks awarded by guide/supervisor based on log book	: 10
0	Marks awarded by review committee	: 10
0	Quality of Project report	: 05

Review/progress monitoring committee may consider following points for assessment based on either one year or half year project as mentioned in general guidelines.

One-year project:

- In first semester entire theoretical solution shall be ready, including components/system selection and cost analysis. Two reviews will be conducted based on presentation given by students group.
 - First shall be for finalisation of problem
 - Second shall be on finalisation of proposed solution of problem.
- In second semester expected work shall be procurement of component's/systems, building of working prototype, testing and validation of results based on work completed in an earlier semester.
 - First review is based on readiness of building working prototype to be conducted.
 - Second review shall be based on poster presentation cum demonstration of working model in last month of the said semester.

Half-year project:

In this case in one semester students' group shall complete project in all aspects including,

- Identification of need/problem
- Proposed final solution
- Procurement of components/systems
- Building prototype and testing

Two reviews will be conducted for continuous assessment,

- First shall be for finalisation of problem and proposed solution
- Second shall be for implementation and testing of solution.

Assessment criteria of Mini Project.

Mini Project shall be assessed based on following criteria;

- 1. Quality of survey/ need identification
- 2. Clarity of Problem definition based on need.
- 3. Innovativeness in solutions
- 4. Feasibility of proposed problem solutions and selection of best solution
- 5. Cost effectiveness
- 6. Societal impact
- 7. Innovativeness
- 8. Cost effectiveness and Societal impact
- 9. Full functioning of working model as per stated requirements
- 10. Effective use of skill sets
- 11. Effective use of standard engineering norms
- 12. Contribution of an individual's as member or leader
- 13. Clarity in written and oral communication
- In **one year, project**, first semester evaluation may be based on first six criteria's and remaining may be used for second semester evaluation of performance of students in mini project.
- In case of **half year project** all criteria's in generic may be considered for evaluation of performance of students in mini project.

Guidelines for Assessment of Mini Project Practical/Oral Examination:

- Report should be prepared as per the guidelines issued by the University of Mumbai.
- Mini Project shall be assessed through a presentation and demonstration of working model by the student project group to a panel of Internal and External Examiners preferably from industry or research organisations having experience of more than five years approved by head of Institution.
- Students shall be motivated to publish a paper based on the work in Conferences/students competitions.

Mini Project shall be assessed based on following points;

- 1. Quality of problem and Clarity
- 2. Innovativeness in solutions
- 3. Cost effectiveness and Societal impact
- 4. Full functioning of working model as per stated requirements
- 5. Effective use of skill sets
- 6. Effective use of standard engineering norms
- 7. Contribution of an individual's as member or leader
- 8. Clarity in written and oral communication
